Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available August 25, 2026
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            With the proliferation of safety-critical real-time systems in our daily life, it is imperative that their security is protected to guarantee their functionalities. To this end, one of the most powerful modern security primitives is the enforcement of data flow integrity. However, the run-time overhead can be prohibitive for real-time cyber-physical systems. On the other hand, due to strong safety requirements on such real-time cyber-physical systems, platforms are often designed with enough reservation such that the system remains real-time even if it is experiencing the worst-case execution time. We conducted a measurement study on eight popular CPS systems and found the worst-case execution time is often at least five times the average run time. In this paper, we propose opportunistic data flow integrity, OP-DFI, that takes advantage of the system reservation to enforce data flow integrity to the CPS software. To avoid impacting the real-time property, OP-DFI tackles the challenge of slack estimation and run-time policy swapping to take advantage of the extra time in the system opportunistically. To ensure the security protection remains coherent, OP-DFI leverages in-line reference monitors and hardware-assisted features to perform dynamic fine-grained sandboxing. We evaluated OP-DFI on eight real-time CPS. With a worst-case execution time overhead of 2.7%, OP-DFI effectively performs DFI checking on 95.5% of all memory operations and 99.3% of safety-critical control-related memory operations on average.more » « less
- 
            When the disturbance input matrix is nonlinear, existing disturbance observer design methods rely on the solvability of a partial differential equation or the existence of an output function with a uniformly well-defined disturbance relative degree, which can pose significant limitations. This note introduces a systematic approach for designing an Immersion and Invariance-based Disturbance Observer (IIDOB) that circumvents these strong assumptions. The proposed IIDOB ensures the disturbance estimation error is globally uniformly ultimately bounded by approximately solving a partial differential equation while compensating for the approximation error. Furthermore, by integrating IIDOB into the framework of control barrier functions, a filter-based safe control design method for control affine systems with disturbances is established where the filter is used to generate an alternative disturbance estimation signal with a known derivative. Sufficient conditions are established to guarantee the safety of the disturbed systems. Simulation results demonstrate the effectiveness of the proposed method.more » « less
- 
            This work presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method.more » « less
- 
            Graphics Processing Units (GPU) are increasingly deployed on Cyber-physical Systems (CPSs), frequently used to perform real-time safety-critical functions, such as object detection on autonomous vehicles. As a result, availability is important for GPU tasks in CPS platforms. However, existing Trusted Execution Environments (TEE) solutions with availability guarantees focus only on CPU computing.To bridge this gap, we propose AvaGPU, a TEE that guarantees real-time availability for CPU tasks involving GPU execution under compromised OS. There are three technical challenges. First, to prevent malicious resource contention due to separate scheduling of CPU and GPU tasks, we proposed a CPU-GPU co-scheduling framework that couples the priority of CPU and GPU tasks. Second, we propose software-based secure preemption on GPU tasks to bound the degree of priority inversion on GPU. Third, we propose a new split design of GPU driver with minimized Trusted Computing Base (TCB) to achieve secure and efficient GPU management for CPS. We implement a prototype of AvaGPU on the Jetson AGX Orin platform. The system is evaluated on benchmark, synthetic tasks, and real-world applications with 15.87% runtime overhead on average.more » « less
- 
            Re, Angela (Ed.)ABSTRACT Dissolved organic phosphorus (DOP) is a potential source of aquatic eutrophication and pollution because it can potentially stimulate growth in some species and inhibit growth in other species of algae, the foundation of the marine ecosystem. Inositol hexaphosphate (also named phytic acid or PA), an abundant organophosphate, is presumably ubiquitous in the marine environment, but how it affects marine primary producers is poorly understood. Here, we investigated the bioavailability of this DOP to the cosmopolitan coccolithophoreEmiliania huxleyi. Our results showed thatE.huxleyicells can take up PA and dissolved inorganic phosphorus (DIP) simultaneously. Absorbed PA can efficiently support algal growth, producing cell yield between DIP and phosphorus (P)-depleted conditions. Accordingly, PA supply as the sole P source highly influences cellular metabolism and nutrient stoichiometry. Particularly, PA-grown cultures exhibited enhanced carbon fixation, increased lipid content, activated energy metabolism, and induced nitrogen assimilation. However, our data suggest that PA may also exert some levels of toxic effects onE. huxleyi. This study provides novel insights into the variable effects of a DOP on marine phytoplankton, which will inform new inquiries about how the complex DOP constituencies in the ocean will shape phytoplankton community structure and function. IMPORTANCEThe dissolved organic phosphorus (DOP) utilization in phytoplankton plays vital roles in cellular P homeostasis, P-nutrient niche, and the dynamics of community structure in marine ecosystems, but its mechanisms, potentially varying with species, are far from clear. In this study, we investigated the utilization of a widespread DOP species, which is commonly produced by plants (land plants and marine macrophytes) and released into coastal areas, in a globally distributed bloom-forming coccolithophore species in various phosphorus environments. Using a combination of physiological and transcriptomic measurements and analyses, our experimental results revealed the complex mechanism and two-sided effects of DOP (major algal growth-supporting and minor toxic effects) in this species, providing a novel perspective on phytoplankton nutrient regulation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available